章节阅读
第四百八十三章 研究方向(3/4)
多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。

  既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?

  这就是著名的np=p的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

  而杨-米尔斯存在性和质量缺口,量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。

  大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

  基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。

  尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

  特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。

  在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

  至于纳卫尔-斯托可方程的存在性与光滑性,则是流体力学领域问题。

  起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。

  数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。

  虽然庞氏几何理论使科学家们在求解非线性偏微分方程组取得了实质性的进展,但隐藏在纳维叶-斯托克斯方程中的奥秘,依旧需要数学家们共同努力。

  至于黎曼猜想,其意义就更不必说了。

  黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。

  1859年,黎曼被选为了柏林科学院的通信院士。

  作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。

  这篇只有短短八页的论文就是黎曼猜想的“诞生地”。

  黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。

  素数又称质数。质数是像2、3、5、7、11、13、17、19那样大于1且除了1和自身以外不能被其他正整数整除的自然数。

  这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的和。

  从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。

  质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

  黎曼论文的一个重大的成果,就是发现了质数分布的奥秘完全蕴藏在一个特殊的函数之中,尤其是使那个函数取值为零的一系列特殊的点对质数分布的细致规律有着决定性的影响。

  那个函数如今被称为黎曼ζ函数,那一系列特殊的点则被称为黎曼ζ函数的非平凡零点。

  有意思的是,黎曼那篇文章的成果虽然重大,文字却极为简练,甚至简练得有些过分,因为它包括了很多“证明从略”的地方。

  而要命的是,“证明从略”原本是应该用来省略那些显而易见的证明的,黎曼的论文却并非如此,他那

  本章未完,请点击下一章继续阅读!